United States Patent

US009471343B2

(12) (10) Patent No.: US 9,471,343 B2
Dawson et al. 45) Date of Patent: *Oct. 18, 2016
(54) DYNAMIC CODE INJECTION 7,865,703 B2* 1/2011 Chenc...... GOGF 11/3466
. . . . 712/227
(71) Applicant: Internatl(.)nal Business Machines 8,832,665 B2* 9/2014 Greifeneder 717/127
Corporation, Armonk, NY (US) 2004/0268317 AL* 12/2004 GOUTIOUvrrvcen GOGF 9/4843
(72) Inventors: Michael H. Dawson, Ottawa (CA); 717/130
X 2005/0086648 Al* 4/2005 Andrews GOGF 11/3608
Graeme Johnson, Ottawa (CA); San 717/135
Hong Li, Shanghai (CN) 2006/0294435 Al* 12/2006 Vick .ocoocooorviiii. GOGF 11/1438
. . . . 714/38.13
(73) Assignee: International Business Machines N
Corporation, Armonk, NY (US) 2007/0261033 AL* 112007 Che v GO6E ;}/73/41‘28
(*) Notice: Subject to any disclaimer, the term of this 2008/0086296 Al* 4/2008 Kahlon GOGF 1 %336/25
patent is extended or adjusted under 35 2009/0235237 Al* 9/2009 Song ..oooovvvvreereeans. GO6F 8/456
U.S.C. 154(b) by 0 days. 717/132
3k
This patent is subject to a terminal dis- 2009/0320001 AL 12/2009 Bates . GO6F;}/73/?38
claimer. 2010/0192139 Al* 7/2010 Titzercccceveenee. GOGF 9/485
(21) Appl. No.: 14/840,126 . 717151
(22) Filed: Aug. 31, 2015 (Continued)
(65) Prior Publication Data OTHER PUBRLICATIONS
US 2015/0370585 Al Dec. 24, 2015) . ' o .
Related U.S. Application Data Litty et al., “Computer Meteorology: Monitoring Compute Clouds”,
)) o 12th Workshop on Hot Topics in Operating Systems (HotOS 2009),
(63) Continuation of application No. 14/224,178, filed on May 2009, provided in search report provided by IPpro Services
Mar. 25, 2014. (India) Pyt. Ltd., dated Nov. 28, 2013.
(51) Int. CL (Continued)
GO6F 9/44 (2006.01)
GO6F 9/455 (2006.01) Primary Examiner — Insun Kang
GO6F 11/36 (2006.01) (74) Attorney, Agent, or Firm — Noah A. Sharkan
GO6F 9/48 (2006.01)
GO6F 9/50 (2006.01) (57) ABSTRACT
(52) US. ClL Embodiments of the present invention disclose an approach
p pp
CPC e Go6r ?/ 45504 (2013.01); G06.F 9/48 for inserting code into a running thread of execution. A
(2013.01); GOGF 9/50 (2013.01); GO6F computer sets a first set of bits to a first value, wherein the
. . . 11/3688 (2013.01) first value indicates that a first set of instructions should be
(58) Field of Classification Search inserted onto a stack. The computer executes a second set of
None instructions associated with a first safepoint, wherein the
_ . P
See application file for complete search history. second set of instructions comprises one or more instruc-
. tions to determine if the first set of bits is set to the first
(56) References Cited value. The computer determines that the first set of bits is set
U.S. PATENT DOCUMENTS to the ﬁrst value, and the computer inserts the first set of
instructions onto the stack.
7.418,630 B1* 8/2008 Vickccocevviennnns GOGF 9/485
714/34 8 Claims, 5 Drawing Sheets
)/]/100

o

3

E

150

CPU ALLOGATION

ACCUMULATOR
THREAD 154
158 —

R

‘CODE INJECTION
MODULE

SERVER COMPUTER
130
JAVAVIRTUAL MACHINE
132
TENANT APPLICATION NANT
122 APPLICATION
126
THREAD =
134
13611 sTack | [mwEcT
8T
140~ T{_WESK 148
142 L[1{SaFeponT |
1981117
‘ ‘SERVER GPERATING SYSTEN
HARDWARE RESOURCES
CcRy o
12

PHYSICAL
ME!

<
H
2
3
2
2
S E =FR
35 N L858
! 25| k5
BEH]
g8

US 9,471,343 B2
Page 2

(56)

2010/0262812
2010/0274972
2011/0004869
2011/0029490
2011/0138473

2011/0283256

2011/0283263
2012/0159462
2012/0167057

2013/0312103

References Cited

U.S. PATENT DOCUMENTS

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

10/2010

10/2010

1/2011

2/2011

6/2011

112011

112011

6/2012

6/2012

11/2013

LOpezcccovvun. GOGF 9/30043
712/228
Babayan GOGF 9/3842
711/125
Kawahito GOGF 8/443
717/151
Agarwal ... GOGF 9/467
707/684
Yee .o GOGF 9/445
726/26

Raundahl
Gregersen GOGF 8/67
717/108
Gagliardi GOGF 11/3644
717/130
Leibman GOGF 11/1438
717/140
Schmich GOGF 11/3644
717/130
Brumley GOG6F 21/577
726/25

2014/0165049 Al* 6/2014 Diamos GOG6F 8/443
717/156
2015/0234683 Al* 82015 Ogasawara ... GOG6F 9/5016
711/163
2015/0256484 Al* 9/2015 Cameron GOG6F 9/3004
709/226

OTHER PUBLICATIONS

Siméo et al.,, “A2-VM: A Cooperative Java VM with Support for
Resource-Awareness and Cluster-Wide Thread Scheduling”, OTM
Conferences, vol. 7044 of lecture notes in Computer Science, pp.
302-320, Springer-Verlag Berlin, Heidelberg, © 2011, provided in
search report provided by IPpro Services (India) Pvt. Ltd., dated
Now. 28, 2013.

IBM, “IBM SDK, Java Technology Edition, V8: Beta Program,
latest news and information”, Apr. 2013, <http://www-01.ibm.com/
support/docview. wss?uid=swg21615834>, “Grace Period Disclo-
sure”.

Dawson et al., “Dynamic Code Injection”, U.S. Appl. No.
14/224,178, filed Mar. 25, 2014, pp. 1-39.

IBM Patents or Patent Applications Treated as Related, Appendix P,
dated Aug. 31, 2015, pp. 1-2.

* cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 5 US 9,471,343 B2
)/1/100
CLIENT COMPUTER CLIENT COMPUTER
120 124
SERVER COMPUTER
130
JAVA VIRTUAL MACHINE
132
MASKING MODULE
TENANT APPLICATION TENANT 150
122 APPLICATION
126 CPU ALLOCATION
TH%EL{\D ACCUMULATOR
134 THREAD 154
136 L sTACK INJECT 156
BIT RESOURCE
140 - N MASK 144 ALLOCATION
142 <L _LA1-{ SAFEPOINT MODULE
138 L1 152
ME',%';Y CODE INJECTION
126 MODULE
1% 148
SERVER OPERATING SYSTEM
160
HARDWARE RESOURCES
170 SIC
PHYSICAL
‘1’53 MEMORY
== 174

FIG. 1

U.S. Patent Oct. 18, 2016 Sheet 2 of 5 US 9,471,343 B2

148
prard

REACH A SAFE POINT ~— 202

INJECT NO

BIT SET?

PUSH RUNNABLE CODE FRAME |
TO THE TOP OF THE STACK

'

EXECUTE RUNNABLE CODE - 208

'

POP RUNNABLE CODE FRAME ANDRETURN |
TO CODE RUNNING PRIOR TO INJECTION 210

FIG. 2

U.S. Patent

Oct. 18, 2016 Sheet 3 of 5

US 9,471,343 B2

,/1/150

CALL MASK FOR THREAD |~ 302

l.

REACH SAFE POINT |~ 304

306

NO

YES

CLEAR INJECT BIT AND

Y
CALL UNMASK I~ 310

Y

EXECUTE CODE INJECTION MODULE

SET PENDING INJECT BIT [~ 308

~—312

FIG. 3

U.S. Patent Oct. 18, 2016 Sheet 4 of 5 US 9,471,343 B2

/1/152

TRANSMIT REQUEST FOR THE CURRENT CPU

404

DID THE

TENANT APPLICATION NO

ALLOCATION WITH RESPECT TO A TENANT APPLICATION |~ 402

EXCEED ITS CPU ALLOCATION FOR
THE CURRENT ALLOCATIO
PERIOD?

SUSPEND EXECUTION OF THE THREADS OF THE TENANT
APPLICATION THAT EXCEEDED AVAILABLE CPU ALLOCATION

~— 406

'

RECEIVE INDICATION THAT THE TENANT APPLICATION

'

HAS RECEIVED AN ADDITIONAL CPU ALLOCATION [~ 408

RESUME THREAD EXECUTION FOR THE TENANT APPLICATION

~— 410

FIG. 4

U.S. Patent Oct. 18, 2016 Sheet 5 of 5 US 9,471,343 B2
,/1/130
506
/ 508
MEMORY
514
) PERSISTENT
RAM STORAGE
504 _
\
CACHE 148 | | 150
PROCESSOR(S) > — ||
516
520 512
\ \ 510
10 L
DISPLAY == INTERFACE(S) COMMUNICATIONS UNIT
[
518
N
EXTERNAL
DEVICE(S)

FIG. 5

US 9,471,343 B2

1
DYNAMIC CODE INJECTION

STATEMENT REGARDING PRIOR
DISCLOSURES BY THE INVENTOR OR A
JOINT INVENTOR

Various aspects of the present invention have been dis-
closed by an inventor or a joint inventor in the product IBM
Software Development Kit, Java Technology Edition, Ver-
sion 8: Beta Program, made publically available on Apr. 25,
2013. This disclosure is submitted under 35 U.S.C. 102(b)
()(A). The following document is provided in support:

IBM SDK, Java Technology Edition, V8: Beta Program,

latest news and information.

FIELD OF THE INVENTION

The present invention relates generally to the field of
multitenant computing, and more particularly to injecting
code into running threads of execution.

BACKGROUND OF THE INVENTION

In multitenant computing environments, multiple client
computers run tenant applications in a single instance of a
virtual machine, such as the Java Virtual Machine (JVM).
For clients executing applications based in the Java® pro-
gramming language, the single virtual machine instance is
the JVM, which executes on a server computer and provides
a virtual computing environment that accesses the physical
resources of the server computer while maintaining isolation
among the tenant applications and information that they
access. The JVM executes Java bytecode using threads.
Threads contain a program counter and a stack. The program
counter keeps track of where the JVM is executing instruc-
tions (e.g., the memory location currently being used) and
the number of instructions that have been executed on the
thread. The stack is a last in first out (LIFO) data structure
that contains frames, which include the bytecode detailing
instructions to be performed by the server computer physical
resources.

During execution of the thread, the thread can be at a
“safepoint” or not at a safepoint. When at a safepoint, the
thread’s representation of the JVM is well described, and
can be safely manipulated and seen by other threads in the
JVM. When the thread reaches a safepoint, the thread may
be safely blocked for a period of time in order to perform
actions that affect all threads, such as garbage collection.
During compilation of Java bytecode into compiled code,
the compiler can determine that a safepoint exists at a certain
place in the code and insert additional instructions that
instruct the thread executing the compiled code to perform
certain functions outside of the compiled application code.

SUMMARY

Embodiments of the present invention disclose a method,
computer program product, and system for inserting code
into a running thread of execution. A computer sets a first set
of bits to a first value, wherein the first value indicates that
a first set of instructions should be inserted onto a stack. The
computer executes a second set of instructions associated
with a first safepoint, wherein the second set of instructions
comprises one or more instructions to determine if the first
set of bits is set to the first value. The computer determines

10

15

20

25

30

35

45

50

55

60

65

2

that the first set of bits is set to the first value, and the
computer inserts the first set of instructions onto the stack.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a functional block diagram illustrating a multi-
tenant computing environment, in accordance with an
embodiment of the present invention.

FIG. 2 is a flowchart depicting operational steps of a code
injection module, on a server computer within the environ-
ment of FIG. 1, in accordance with an embodiment of the
present invention.

FIG. 3 is a flowchart depicting operational steps of a
masking module, on a server computer within the environ-
ment of FIG. 1, in accordance with an embodiment of the
present invention.

FIG. 4 is a flowchart depicting operational steps of a
resource allocation module, on a server computer within the
environment of FIG. 1, in accordance with an embodiment
of the present invention.

FIG. 5 depicts a block diagram of components of the
server computer executing the code injection module and the
masking module, in accordance with an embodiment of the
present invention.

DETAILED DESCRIPTION

Embodiments of the present invention recognize that, in
virtualized, multitenant environments, certain operations
may need to be performed that affect all threads and not just
the thread(s) of a single tenant application. For example, in
the Java Virtual Machine (JVM), resource management may
include allocating access to memory or CPU resources
across tenant applications in order to ensure that one tenant
does not dominate CPU capacity while other tenant appli-
cations lack necessary CPU capabilities. Embodiments of
the present invention disclose injecting code into a running
thread to achieve a desired behavior. Various embodiments
may be useful for, among other applications, computing
resource allocation, statistics gathering, determining stack
depth, and/or controlling the lifetime of particular threads.

The present invention will now be described in detail with
reference to the Figures. FIG. 1 is a functional block diagram
illustrating a multitenant computing environment (“environ-
ment”), generally designated 100, in accordance with an
embodiment of the present invention.

Environment 100 includes server computer 130 and client
computers 120 and 124, all interconnected over network
110. Network 110 can be, for example, a local area network
(LAN), a wide area network (WAN) such as the Internet, or
a combination of the two, and can include wired, wireless,
or fiber optic connections. In general, network 110 can be
any combination of connections and protocols that will
support communications between server computer 130 and
client computers 120 and 124.

In various embodiments of the present invention, client
computers 120 and 124, as well as server computer 130, can
be servers, laptop computers, tablet computers, netbook
computers, personal computers (PCs), desktop computers,
personal digital assistants (PDAs) smart phones, or any
programmable electronic devices capable of communicating
over network 110. In another embodiment, server computer
130 and client computers 120 and 124 represent a computing
system utilizing clustered computers and components to act
as a single pool of seamless resources when accessed by
elements of environment 100. In general, server computer

US 9,471,343 B2

3

130 can be any computing device or combination of devices
with access to thread 134, code injection module 148,
masking module 150, resource allocation module 152, and
CPU allocation accumulator 154, and capable of running
code injection module 148, masking module 150, and
resource allocation module 152. Server computer 130 may
include internal and external hardware components, as
depicted and described in further detail with respect to FIG.
5.

Server computer 130 includes server operating system
160, hardware resources 170, and JVM 132. In some
embodiments, server operating system 160 is the native
operating system of server computer 160. In various
embodiments, server operating system 160 includes an
application programming interface (API) which allows JVM
132 to access and allocate hardware resources 170, such as
CPU 172 and physical memory 174, for use by tenant
applications 122 and 126. In various embodiments, CPU 172
and physical memory 174 are shared physical resources that
tenant applications 122 and 126 can access by interacting
with JVM 132. In some embodiments, server operating
system 160 can run programs, such as application services
or daemons, which apply to all tenant applications running
in JVM 132.

JVM 132 is a managed runtime environment that executes
computer instructions written in Java bytecode by interpret-
ing and/or compiling the instructions into machine code that
hardware resources 170 can interpret. JVM 132 performs
just-in-time (JIT) compilation on a Java-based programing
language. This process converts the Java-based source code
into object code that CPU 172 can interpret to perform
various computer functions, such as arithmetic, read, and
write functions. Additionally, JVM 132 manages one or
more threads of execution associated with tenant applica-
tions 122 and 126, such as threads 134 and 156.

JVM 132 includes tenant applications 122 and 126. Ten-
ant application 122 is associated with a single client com-
puter, such as client computer 120, and tenant application
126 is associated with a different client computer, such as
client computer 124. In various embodiments, tenant appli-
cations 122 and 126 represent computer readable software
applications that access a shared pool of hardware resources
in server computer 130 through a single, shared instance of
JVM 132 operating on server computer 130. In various
embodiments, tenant applications 122 and 126 are computer
software code written in a programming language for com-
pilation by JVM 132, such as, Java®, Jython®, Kotlin®,
JRuby®, or other languages.

Tenant application 122 includes thread 134. Thread 134 is
a mechanism within JVM 132 for executing a discrete
sequence of programmed instructions. In various embodi-
ments, thread 134 can include a program counter and/or a
stack data structure, such as stack 136. In some embodi-
ments, each tenant application, such as tenant applications
122 and 126, includes one or more associated threads.
Additionally, in some embodiments, additional threads may
be maintained by JVM 132 and/or server operating system
160 for operations such as garbage collection or hardware
resource management. In various embodiments, other tenant
applications, such as tenant application 126, include one or
more associated threads, such as thread 156. Thread 156
further includes analogous contents, such as one or more
stack data structures and an inject bit (not shown).

Thread 134 includes stack 136 and inject bit 144. Stack
136 comprises one or more frames, such as frame 138. Stack
136 is a “last in first out” (LIFO) data structure. In various
embodiments, a frame can be added to the stack (pushed) for

10

15

20

25

30

35

40

45

50

55

60

65

4

execution. Similarly, when a frame completes execution, the
frame is removed (popped) from the top of the stack and the
thread proceeds to process the frame below the popped
frame. In various embodiments, frames include the neces-
sary class information and reference information to modity
and alter local variables. In various embodiments, stack 136
can include an associated bit that, when activated, masks the
thread execution. Mask frame 140 includes program instruc-
tions to activate the mask bit to indicate that interruption of
the thread execution may result in an exception. Safepoint
142 is a common component in the JVM 132 that indicates
a particular point in thread execution at which the execution
may be suspended for a period of time without disrupting the
execution of the thread. For example, safepoints are com-
monly used to halt thread execution for the purposes of
garbage collection. Safepoints occur at various intervals in
the code, such as, after a return from method call or at a back
jump of a loop. In various embodiments, safepoints can be
identified at compile time by a compiler (e.g., a just-in-time
compiler), and the compiler can insert program instructions
for the thread executing the instructions to perform functions
outside of the original application code. In some embodi-
ments of the present invention, the instructions added at the
safepoint include instructions to check one or more bits of
information (e.g., inject bit 144) that, when set to a particular
value, indicate that a set of program instructions should be
injected onto the stack of the executing thread. In various
embodiments of the present invention, JVM 132 injects a
runnable interface at a thread safepoint in order to instruct
the thread to execute the runnable method.

Inject bit 144 is one or more bits of information stored in
association with thread 134 and, when set to a particular
value, instructs thread 134 to push a runnable piece of code,
such as a method onto the top of stack 136 when a safepoint
is reached. In an embodiment, thread 134 executes the
program instructions in stack 136 until a safepoint is
reached. In this embodiment, the safepoint includes instruc-
tions to check a series of bits stored in association with
thread 134. In this embodiment, one such bit (e.g., inject bit
144) instructs thread 134 to push a runnable method onto the
stack for execution by the thread before returning to the code
that was running when the thread reached the safepoint. In
various embodiments, inject bit 144 can be set for safepoints
occurring at regular time intervals. For example, inject bit
144 may be set to trigger injection once per second, but any
safepoints that occur more frequently than once per second
would have inject bit 144 set to a value that does not trigger
injection. In this example, the thread will execute the
injected runnable method at a regular interval. The injected
runnable may include instructions to collect statistics, man-
age resource allocation, or terminate a thread.

JVM 132 includes heap memory 146, code injection
module 148, masking module 150, resource allocation mod-
ule 152, and CPU allocation accumulator 154.

Heap memory 146 is a memory data structure that is used
to allocate class instances and arrays at runtime. In various
embodiments, heap memory 146 provides for dynamic
memory allocation that is divided into generations. In some
embodiments, heap memory 146 has a young generation for
short-lived objects that are created and then immediately
garbage collected, and an old generation for objects that are
used repeatedly by one or more threads.

Code injection module 148 is software capable of pushing
a frame of runnable code onto stack 136 of thread 134.
Additionally, code injection module 148 is capable of com-
municating with threads associated with other tenants oper-
ating on JVM 132. In various embodiments, code injection

US 9,471,343 B2

5

module 148 determines that thread 136 has reached a
safepoint, checks inject bit 144 to determine if an injection
of code into stack 136 should occur, and if so, injects a
sequence of runnable code into the stack of the thread, which
then executes the injected code before popping the runnable
code and returning to code that was executing prior to the
safepoint.

Masking module 150 is software capable of marking a
particular thread as unsafe to halt for a code injection. In
various embodiments, masking module 150 determines that
a mask was called, that stack 136 reaches a safepoint, and
that inject bit 144 is set, then masking module 150 clears the
inject bit and sets a pending inject bit, which thread 134 will
check when an unmask method is called.

Resource allocation module 152 is an example implemen-
tation of code injection module 148 directed to a specific
embodiment in the context of resource allocation of CPU
172 time amongst tenant applications 122 and 126.

CPU allocation accumulator 154 is a data structure that
maintains the allotment granted to each tenant computer by
JVM 132. In various embodiments, CPU allocation accu-
mulator 154 includes the number of cycles of CPU 172 that
tenant application 122 is, on average, permitted to use in a
defined period of time. In certain embodiments, CPU allo-
cation accumulator 154 maintains a running total of the
number of cycles used in the specified time. Resource
allocation module 152 checks the status of running totals at
safepoints, such as safepoint 142, and if tenant application
122 exceeds its allotment, then resource allocation module
152 ceases execution of thread 134 until tenant application
122 receives an additional allotment of CPU cycles at the
end of the defined period of time.

FIG. 2 is a flowchart depicting operational steps of code
injection module 148 operating within JVM 132, in accor-
dance with an embodiment of the present invention. Code
injection module 148 provides a computer implemented
mechanism for safely halting executing threads in a multi-
tenant JVM in order to inject runnable code onto the stack
of one or more running threads. In various embodiments,
code injection module 148 instructs JVM 132 to perform
actions and manipulate data which may be carried out, for
example, by thread 134, or an independent thread operating
within JVM 132.

JVM 132 determines that thread 134 reaches a safepoint
in its execution, such as safepoint 142 (step 202). Safepoints
in threads executing within the JVM occur at predetermined
times, for example, at the invocation of a particular method.
Safepoints indicate particular points in the execution of the
thread at which operations other than the code of the
executing tenant application, such as tenant applications 122
and 126, may be safely executed by the thread. In one
embodiment of the present invention, safepoints include
instructions to perform maintenance functions or other sta-
tistics gathering functions. In an embodiment, a given safe-
point includes instructions to check one or more bits of
information stored within the thread to determine if any of
the maintenance functions or statistics gathering functions
should be performed while the thread is at a safepoint.

JVM 132 determines whether the inject bit is set (decision
block 204). In one embodiment, one or more of the bits, such
as inject bit 144, checked during the safepoint includes
instructions to inject, or push, a particular piece of runnable
code to the top of stack 136. In various embodiments, the
injected code can include statistics gathering code or
resource allocation code, such as resource allocation module
152. In various embodiments, inject bit 144 can be set to
instruct JVM 132 to inject the runnable code at a safepoint

20

25

30

35

40

45

55

6

or set to instruct JVM 132 not to inject any runnable code at
this safepoint. In some embodiments, inject bit 144 can be
set to inject runnable code at predetermined time intervals,
such as once per second. If JVM 132 determines that the
injection bit is not set to inject runnable code into stack 136
(decision block 204, NO branch), then JVM 132 waits until
the next safepoint is reached in step 202. If JVM 132
determines that inject bit 144 bit is set and a runnable code
should be injected into the stack at the safepoint, then JVM
132 proceeds to push a segment of runnable code to the top
of the stack in step 206.

JVM 132 pushes a segment of runnable code to the top of
stack 136 (step 206). In various embodiments of the present
invention, the segment of runnable code can be an extension
of'the interface java.lang. RunnableQ. In other embodiments,
the runnable code can be injected using any type of code,
method, or function that will initiate a runnable sequence of
code. The runnable interface provides a mechanism for
inserting a runnable method onto stack 136 as well as other
stacks that may be associated with other tenant applications.
In various embodiments, extensions of the runnable inter-
face include runnable methods that instruct the thread to
perform various functions such as collect statistics, perform
resource allocation functions, terminate a thread, or other
functions.

JVM 132 executes the injected, runnable code (step 208).
Thread 134, operating within tenant application 122 in JVM
132, now having a runnable method frame as at the top of
stack 134, executes the instructions pushed to the top of
stack 134. In various embodiments, the runnable code
includes Java bytecode instructions that may relate to such
functions as statistic collection, resource management, and/
or thread termination. In various embodiments, the injected
code is limited to code that will not break the tenant
application code that was running prior to the injection. For
example, allowing input/output resources in the injected
code can cause exceptions if the code executing prior to the
code injection was already using the input/output resources.
In other embodiments, ensuring that the code being injected
is pre-resolved, and that all class and/or field references have
been initialized, avoids running a ClassLoader infrastruc-
ture, which may lead to various exceptions or errors.

JVM 132 pops the runnable method frame from stack 136
and returns to execution of the code in stack 136 on thread
134 that was running prior to the code injection (step 210).
At the end of the runnable method executed in step 208, the
code instructions include instructions to pop (i.e., remove)
the frame containing the injected code from stack 136. In
some embodiments, following the removal of the injected
code, thread 134 returns to executing the frames that popu-
lated stack 136 prior to the injection of the runnable code. In
other embodiments, the runnable code includes instructions
to terminate thread 134, in which case, following the execu-
tion of the runnable code, stack 136 pops the frame con-
taining the runnable method and thread 134 terminates.

FIG. 3 is a flowchart depicting operational steps of
masking module 150 operating within JVM 132, in accor-
dance with an embodiment of the present invention.
Embodiments of masking module 150 recognize that there
are periods in thread execution during which halting the
thread and injecting code into the thread could result in
errors and/or exceptions occurring in both the injected code
and when the thread attempts to return to normal execution
following the removal of the injected code. In various
embodiments, masking module 150 instructs JVM 132 to

US 9,471,343 B2

7

perform actions and manipulate data which may be carried
out, for example, by thread 134, or an independent thread
operating within JVM 132.

JVM 132 calls a mask for thread 134 (step 302). In one
embodiment, thread 134 includes a plurality of associated
bits of information. In some embodiments, one of the
associated bits of information indicates whether or not a
mask was called during the execution of the plurality of
frames in stack 136, for example, by executing the code
included in mask 140. In one embodiment, a line of com-
puter code executing on thread 134, such as a method of Java
bytecode, instructs CPU 172 to set the associated bit that
indicates whether or not a thread is masked (“mask bit”) to
a predefined value, wherein the value indicates that the
thread is masked. In various embodiments, masking marks
the thread so that code injection module 148 does not
instruct JVM 132 to inject any code onto stack 136 even if
thread 134 is at a safepoint and inject bit 144 is set to
indicate that an injection should occur.

JVM 132 determines that thread 134 reached a safepoint
in execution (step 304). Safepoints in threads executing
within the JVM occur at predetermined times, for example,
at the invocation of a particular method. Safepoint 142
indicates particular points in the execution of thread 134 at
which operations other than the code of tenant application
122 may be safely executed by thread 134. In one embodi-
ment of the present invention, safepoint 142 includes
instructions to perform maintenance functions or other sta-
tistics gathering functions. In another embodiment, safe-
point 142 includes instructions to check one or more bits
information stored within the thread to determine if any of
the maintenance functions or statistics gathering functions
should be performed while the thread is at safepoint 142.

JVM 132 determines whether inject bit 144 is set (deci-
sion block 306). In one embodiment, one or more of the bits
checked during safepoint 142 includes instructions to inject,
or push, a particular piece of runnable code to the top stack
136. In various embodiments, this bit can be set to instruct
JVM 132 to inject the runnable code at a safepoint or be set
to instruct JVM 132 not to inject any runnable code at this
safepoint. In some embodiments, the inject bit can be set to
inject runnable code at predetermined time intervals, such as
once per second. If JVM 132 determines that the inject bit
is not set (decision block 306, NO branch), then JVM 132
continues to monitor thread activity until another safepoint
occurs in step 304. If JVM 132 determines that the inject bit
is set and a sequence of runnable code should be injected
onto stack 136 (decision block 306, YES branch), then JVM
132 clears the inject bit and sets a separate, pending inject
bit in step 308.

JVM 132 clears the inject bit and sets the pending inject
bit (step 308). In some embodiments, JVM 132 does not
inject the runnable code onto stack 136 because the mask bit
indicates that an injection could result in errors and/or
exceptions. In various embodiments, JVM 132 clears inject
bit 144 and sets a pending inject bit, which is distinct and
separate from inject bit 144, to active so that when thread
134 executes an unmask method call, thread 134 checks the
pending inject bit, which indicates that there is a runnable
code that should be injected onto stack 136. In alternative
embodiments, JVM 132 does not inject the runnable code,
but resets inject bit 144 to an active position, so that at the
next safepoint, thread 134 checks inject bit 144 again and
determines whether the thread is masked by checking the
mask bit. In various embodiments, the process of resetting
inject bit 144 to active repeats for subsequent safepoints
until an unmask method is called for thread 134. Once the

10

15

20

25

30

35

40

45

50

55

60

65

8

unmask method is called, the next safepoint will result in the
injection of the runnable section of code onto stack 136.

JVM 132 determines that an unmask method has been
called (step 310). An unmask is called when executable
bytecode instructs JVM 132 to deactivate the associated
mask bit and determine if the pending inject bit is set. In
response to determining that the pending inject bit is set,
JVM 132 proceeds to execute code injection module 148, as
described in FIG. 2, or a functional equivalent thereof (step
312).

In other embodiments, JVM 132 can attempt to set the
inject bit to active after a mask has already been called on
thread 134. In these embodiments, JVM 132 can check the
mask bit stored in association with thread 134 to determine
that thread 134 is masked. In response to determining that
the thread 134 is masked, JVM 132 can set the pending
inject bit to active as described in step 308 of FIG. 3. In these
embodiments of the present invention, an unmask method is
called as described in step 310 of FIG. 3. Responsive to
determining that an unmask method was called, these
embodiments proceed to execute code injection module 148,
as in step 312 of FIG. 3.

FIG. 4 is a flowchart depicting operational steps of
resource allocation module 152, in accordance with an
embodiment of the present invention. Resource allocation
module 152 is an example embodiment of an acceptable
sequence of code instructions that may be injected onto
stack 136 in accordance with code injection module 148
and/or masking module 150. To begin with, JVM 132
determines that a safepoint was reached by thread 134, inject
bit 144 was set, and code injection module 148 instructed
JVM 132 to push resource allocation module 152 to the top
of stack 136. Thread 134 begins execution of the program
instructions that make up resource allocation module 152.

Thread 134 transmits a request for the current CPU
allocation with respect to tenant application 122 (step 402).
In one embodiment, thread 134 transmits a request to CPU
allocation accumulator 154 to return the current CPU allo-
cation for the tenant application associated with the thread
on which resource allocation module 152 is executing. In
various embodiments, CPU allocation accumulator 154
maintains a running total of the CPU allocation for each
tenant application in the memory of JVM 132. In these
embodiments, CPU allocation accumulator 154 can also
read and transmit the current state of the CPU allocation for
each thread that transmits a request. CPU allocation may be
measured in, for example, cycles per second.

Thread 134 determines whether a tenant exceeded its
CPU allocation for the current allocation period (decision
block 404). Thread 134 analyzes the received CPU alloca-
tion to determine whether the running total of cycles that
tenant application 122 actually used in the current allocation
period exceeded the maximum amount of cycles allocated to
tenant application 122 for the time period. In some embodi-
ments, CPU allocation accumulator 154 begins a time period
with the maximum number of cycles allowed by each tenant.
As the tenant uses cycles, CPU allocation accumulator 154
subtracts those cycles from the initial amount to maintain a
running total. If tenant application 122 exceeds its allotment
for the time period, then the running total will reach zero
cycles (or negative cycles) during the time period. In other
embodiments, CPU allocation accumulator 154 may begin
each time period with zero cycles for each tenant applica-
tion. In the other embodiments, thread 134 compares the
number of cycles for the tenant at the time of the request
with a maximum number of cycles allowed for the tenant,
which may be, for example, a constant number stored in

US 9,471,343 B2

9

association with thread 134 or in heap memory 146. If thread
134 determines that a tenant did not exceed its CPU allo-
cation for the current time period (decision block 404, NO
branch), then thread 134 returns to request the current CPU
allocation for a subsequent time period in step 402. If thread
134 determines that tenant application 122 did exceed its
CPU allocation for the current time period (decision block
404, YES branch), then thread 134 suspends execution of
tenant application 122 for the duration of the next allocation
time period in step 406.

Thread 134 suspends execution of tenant application (step
406). In one embodiment, thread 134 creates an await
condition, which stops the thread execution until the thread
receives a signal that an additional allocation of CPU
resources has been granted to tenant application 122.

Thread 134 receives a signal that tenant application 122
received an additional CPU allocation (step 408). In an
embodiment, CPU allocation accumulator 154 resets so that
tenant application 122 receives an additional allocation of
CPU cycles at a regular interval of time, for example, once
per second. In this embodiment, the program code that resets
the CPU allocation for the tenant application can include a
program instruction to transmit a signal to thread 134 that an
additional allocation has occurred, and thread 134 can
terminate the await condition and resume execution of the
thread. In response to thread 134 receiving the signal that the
await condition has been satisfied, then thread 134 resumes
thread execution for the threads associated with tenant
application 122 in step 410.

FIG. 5 depicts a block diagram of components of server
computer 130 in accordance with an illustrative embodiment
of the present invention. It should be appreciated that FIG.
5 provides only an illustration of one implementation and
does not imply any limitations with regard to the environ-
ments in which different embodiments may be implemented.
Many modifications to the depicted environment may be
made.

Server computer 130 includes communications fabric
502, which provides communications between computer
processor(s) 504, memory 506, persistent storage 508, com-
munications unit 510, and input/output (I/O) interface(s)
512. Communications fabric 502 can be implemented with
any architecture designed for passing data and/or control
information between processors (such as microprocessors,
communications and network processors, etc.), system
memory, peripheral devices, and any other hardware com-
ponents within a system. For example, communications
fabric 502 can be implemented with one or more buses.

Memory 506 and persistent storage 508 are computer-
readable storage media. In this embodiment, memory 506
includes random access memory (RAM) 514 and cache
memory 516. In general, memory 506 can include any
suitable volatile or non-volatile computer-readable storage
media.

Code injection module 148 and masking module 150 are
stored in persistent storage 508 for execution by one or more
of the respective computer processors 504 via one or more
memories of memory 506. In this embodiment, persistent
storage 508 includes a magnetic hard disk drive. Alterna-
tively, or in addition to a magnetic hard disk drive, persistent
storage 508 can include a solid state hard drive, a semicon-
ductor storage device, read-only memory (ROM), erasable
programmable read-only memory (EPROM), flash memory,
or any other computer-readable storage media that is capable
of storing program instructions or digital information.

The media used by persistent storage 508 may also be
removable. For example, a removable hard drive may be

10

15

20

25

30

35

40

45

50

55

60

65

10

used for persistent storage 508. Other examples include
optical and magnetic disks, thumb drives, and smart cards
that are inserted into a drive for transfer onto another
computer-readable storage medium that is also part of per-
sistent storage 508.

Communications unit 510, in these examples, provides
for communications with other data processing systems or
devices. In these examples, communications unit 510
includes one or more network interface cards. Communica-
tions unit 510 may provide communications through the use
of either or both physical and wireless communications
links. Code injection module 148 and masking module 150
may be downloaded to persistent storage 508 through com-
munications unit 510.

1/0O interface(s) 512 allows for input and output of data
with other devices that may be connected to server computer
130. For example, /O interface 512 may provide a connec-
tion to external devices 518 such as a keyboard, keypad, a
touch screen, and/or some other suitable input device. Exter-
nal devices 518 can also include portable computer-readable
storage media such as, for example, thumb drives, portable
optical or magnetic disks, and memory cards. Software and
data used to practice embodiments of the present invention,
e.g., code injection module 148 and masking module 150,
can be stored on such portable computer-readable storage
media and can be loaded onto persistent storage 508 via I/O
interface(s) 512. /O interface(s) 512 also connect to a
display 520.

Display 520 provides a mechanism to display data to a
user and may be, for example, a computer monitor.

The programs described herein are identified based upon
the application for which they are implemented in a specific
embodiment of the invention. However, it should be appre-
ciated that any particular program nomenclature herein is
used merely for convenience, and thus the invention should
not be limited to use solely in any specific application
identified and/or implied by such nomenclature.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage

US 9,471,343 B2

11

medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network (LAN), a
wide area network (WAN), and/or a wireless network. The
network may comprise copper transmission cables, optical
transmission fibers, wireless transmission, routers, firewalls,
switches, gateway computers and/or edge servers. A network
adapter card or network interface in each computing/pro-
cessing device receives computer readable program instruc-
tions from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as, Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer, or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of

25

40

45

50

55

65

12

methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus, or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

What is claimed is:

1. A method for inserting code into a running thread of
execution, the method comprising:

setting, by one or more computer processors, a first set of

bits to a first value, wherein the first value indicates that
a first set of instructions should be inserted onto a stack
of a thread;

setting, by the one or more computer processors, a second

set of bits to a second value, wherein the second value
indicates that no set of instructions should be inserted
onto the stack until the second set of bits is set to a third
value;

executing, by the one or more computer processors, a

second set of instructions associated with a first safe-
point, wherein the second set of instructions comprises

US 9,471,343 B2

13

one or more instructions to determine if the first set of

bits is set to the first value;

determining, by the one or more computer processors, that
the first set of bits is set to the first value;

setting, by the one or more computer processors, a third
set of bits to a fourth value, wherein the fourth value
indicates that the first set of instructions should be
inserted onto the stack, based at least in part on
execution of a third set of instructions associated with
a second safepoint;

setting, by the one or more computer processors, the
second set of bits to the third value, wherein the third
value indicates that the thread can safely execute the
third set of instructions associated with the second
safepoint and insert the first set of instructions onto the
stack;

executing, by the one or more computer processors, the
third set of instructions associated with the second
safepoint; and

inserting, by the one or more computer processors, the
first set of instructions onto the stack.

2. The method of claim 1, further comprising:

executing, by the one or more computer processors, the
first set of instructions; and

removing, by the one or more computer processors, the
first set of instructions from the stack.

5

10

15

20

25

14

3. The method of claim 2, wherein executing the first set

of instructions comprises:

determining, by the one or more computer processors, that
the thread exceeded a resource allocation limit; and

suspending, by the one or more computer processors,
execution of the thread for a period of time.

4. The method of claim 3, further comprising:

receiving, by the one or more computer processors, a
signal indicating that the period of time has ended; and

resuming, by the one or more computer processors,
execution of the thread.

5. The method of claim 3, wherein determining that the

thread exceeded the resource allocation limit comprises
comparing the resource allocation limit with a current num-
ber of cycles that the thread has executed.

6. The method of claim 1, wherein the first set of

instructions comprises a well-defined set of computer pro-
gram instructions predetermined to be safe to insert onto the
stack.

7. The method of claim 1, wherein the thread is an

application thread of a tenant application executing in a
multitenant virtual machine.

8. The method of claim 1, wherein the first set of

instructions comprise a runnable method to perform one or
more functions of: statistic collection, resource manage-
ment, or thread termination.

#* #* #* #* #*

